
© 2025 Upasana Sridhar

Gen-AI in a Bottle
Experiments with LLMs to generate HPC
kernels

Upasana Sridhar, Elliott Binder, Tze Meng Low
Carnegie Mellon University

1

© 2025 Upasana Sridhar

Writing Libraries is a Recurring Task
▪ Library implementations must be

rewritten for different:
– Datatypes - float, double, int8, etc
– ISAs - x86 AVX, AVX2, ARM NEON,

etc
– Memory hierarchies: cach size,

associativity, levels

2

BLAS3

GEMM

SGEMM

DGEMM

CGEMM

ZGEMM

Per µArch

SGEMM

DGEMM

CGEMM

ZGEMM

SGEMM

DGEMM

CGEMM

ZGEMM

© 2025 Upasana Sridhar

Writing Libraries is a Recurring Task
▪ Library implementations must be

rewritten for different:
– Datatype precisions - float, double,

int8, etc
– ISAs - x86 AVX, AVX2, ARM NEON,

etc
– Memory hierarchies: cach size,

associativity, levels
▪ Repeated for each API in the library

3

GEMM
HEMM
HERK
HER2K
SYMM
SYRK
SYR2K
TRMM
TRSM

S___

D___

C___

Z____

How can we make library-writing more productive?

BLAS3

S___

D___

C___

Z____

S___

D___

C___

Z____

Per µArch

© 2025 Upasana Sridhar

Specialization can be Simplified
▪ Portable library frameworks such as

BLIS[1] reduce specialization effort
▪ Construct an abstraction that is shared

across:
– API calls,
– µArchs, and
– datatypes

4

GEMM
HEMM
HERK
HER2K
SYMM
SYRK
SYR2K
TRMM
TRSM

BLAS3

[1] Field G. Van Zee, Tyler M. Smith, Bryan Marker, Tze Meng Low, Robert A. Van De Geijn, Francisco D. Igual, Mikhail Smelyanskiy, Xianyi Zhang, Michael Kistler, Vernon Austel, John A.
Gunnels, and Lee Killough. 2016. The BLIS Framework: Experiments in Portability. ACM Trans. Math. Softw. 42, 2, Article 12 (June 2016), 19 pages. https://doi.org/10.1145/2755561

© 2025 Upasana Sridhar

Specialization can be Simplified
▪ Portable library frameworks such as

BLIS reduce specialization effort
▪ Construct an abstraction that is shared

across:
– API calls,
– µArchs, and
– datatypes

5
ISA specialization is still necessary

GEMM
HEMM
HERK
HER2K
SYMM
SYRK
SYR2K
TRMM
TRSM

BLAS3

© 2025 Upasana Sridhar

Can we use LLMs to specialize libraries?

6

© 2025 Upasana Sridhar

Using LLMs for HPC Code-Generation

7

1. LLMs for Code-Generation: Tips and Tricks

2. Designing High-Performance GEMM Microkernels

3. Encoding Microkernel Design Principles with Prompt Engineering

© 2025 Upasana Sridhar

Microkernels present a solvable problem

8

▪ Restricted scope has benefits:
– Fixed problem size
– Microkernel code does not have to

handle many edge cases
– Commonly used example

▪ Complexity still scales with
datatype precision and ISA

– LLM needs to retrieve the correct
“form” for specialized instruction

Goal: Generate specialized microkernels using LLMs

© 2025 Upasana Sridhar

Performance Expertise is Latent

9

Prompt:

 Write a high-performance
C-function to implement
double-precision matrix
multiplication with
A: 6x256, B:256x8 and C: 6x8
Function signature:
`dgemm(double const * A, const
double * B, double * C)`

void dgemm(const double *A, const double *B,
 double *C) {
 int i, j, k;
 for (i = 0; i < 6; i++) {
 for (j = 0; j < 8; j++) {
 C[i * 8 + j] = 0.0;
 for (k = 0; k < 256; k++) {
 C[i * 8 + j] += A[i * 256 + k] * B[k * 8 + j];
 }
 }
 }
}

Does not automatically use any ISA-specific code

© 2025 Upasana Sridhar

Providing ISA is helpful but insufficient

10

Prompt:

 Write a high-performance
C-function to implement
double-precision matrix
multiplication with
A: 6x256, B:256x8 and C: 6x8
Function signature:
`dgemm(double const * A, const
double * B, double * C)`

Context
Architecture: AVX2 vector
instructions
Data type: double

void dgemm(double const * A, const double * B,

double * C) {

int i, j, k;

__m256d a0, b0, c0, … ,a6, b6, c6;

__m256d t0, …, t14, t15;

// Loop over the rows of C

for (i = 0; i < 6; i += 8) {

 for (j = 0; j < 8; j += 16) {

 // Initialize the accumulators

 a0 = _mm256_setzero_pd();

 b0 = _mm256_loadu_pd(B + j);

 c0 = _mm256_setzero_pd();

}

© 2025 Upasana Sridhar

Providing ISA is helpful but insufficient

11

Prompt:

 Write a high-performance
C-function to implement
double-precision matrix
multiplication with
A: 6x256, B:256x8 and C: 6x8
Function signature:
`dgemm(double const * A, const
double * B, double * C)`

Context
Architecture: AVX2 vector
instructions
Data type: double

void dgemm(double const * A, const double * B,

double * C) {

int i, j, k;

__m256d a0, b0, c0, … ,a6, b6, c6;

__m256d t0, …, t14, t15;

// Loop over the rows of C

for (i = 0; i < 6; i += 8) {

 for (j = 0; j < 8; j += 16) {

 // Initialize the accumulators

 a0 = _mm256_setzero_pd();

 b0 = _mm256_loadu_pd(B + j);

 c0 = _mm256_setzero_pd();

}

Using
specialized
datatypes

© 2025 Upasana Sridhar

Providing ISA is helpful but insufficient

12

Prompt:

 Write a high-performance
C-function to implement
double-precision matrix
multiplication with
A: 6x256, B:256x8 and C: 6x8
Function signature:
`dgemm(double const * A, const
double * B, double * C)`

Context
Architecture: AVX2 vector
instructions
Data type: double

Model needs more guidance for how to write code

void dgemm(double const * A, const double * B,

double * C) {

int i, j, k;

__m256d a0, b0, c0, … ,a6, b6, c6;

__m256d t0, …, t14, t15;

// Loop over the rows of C

for (i = 0; i < 6; i += 8) {

 for (j = 0; j < 8; j += 16) {

 // Initialize the accumulators

 a0 = _mm256_setzero_pd();

 b0 = _mm256_loadu_pd(B + j);

 c0 = _mm256_setzero_pd();

}

Too many vector
registers

Incorrect indexing

© 2025 Upasana Sridhar

A Primer on Priming LLMs

13

▪ HPC-code is a tiny fraction of
training data

– Hard to retrieve without context

© 2025 Upasana Sridhar

Scaffolded Learning

14

▪ Prompt can be used to “prime”
LLM to use the right subset of
its knowledge

▪ Context could contain
– text-based information
– “Worked examples”

What should be encoded in the microkernel prompt?

<Context>

<Challenge>

<Prompt>

© 2025 Upasana Sridhar

Designing GEMM Microkernels

x86 AVX2 float Kernel ARM NEON Float Kernel

15
There is a shared underlying structure

© 2025 Upasana Sridhar

Both are a Vectorized Outer Product

16
We need encode this pattern into the prompt

Vector width

A

B

© 2025 Upasana Sridhar

Steps to write a Microkernel

17
Create prompts with these steps in the context

 // naive loops
 for (i = 0; i < 6; i++) {
 for (j = 0; j < 8; j++) {
 C[i * 8 + j] = 0.0;
 for (k = 0; k < 256; k++) {
 C[i * 8 + j] += A[i * 256 + k] * B[k * 8 + j];
 }
 }
 }

© 2025 Upasana Sridhar

CodeLLaMA as a Kernel Generator
▪ Small model, runs locally on a

mini-pc
▪ Trained specifically to generate

code
▪ Weights are available to

refine/finetune

18

© 2025 Upasana Sridhar

▪ We tried 5 different types

The Prompt Types

19

Simple Step-by-Step
Rewrite

Style
Transfer

Identify
Instructions

Vectorize
Loops

Least Prescriptive,
Most Generalizable

Most Prescriptive,
Least Generalizable

Microkernel

Vectorization

© 2025 Upasana Sridhar

Focus on generating entire microkernel

20

Simple Step-by-Step
Rewrite

Style
Transfer

Least Prescriptive,
Most Generalizable

Most Prescriptive,
Least Generalizable

Microkernel

© 2025 Upasana Sridhar

Context-Encoding: Entire Microkernel

Step-by-Step:

Kernel Writing Steps
Follow these steps in order

1. Loop Order
<Steps from Table 1>

Challenge
Use the above steps to fill out the
dgemm function

Prompt

Style Transfer:

Prompt

Kernel
This is an example of using AVX2
for floating-point numbers

void sgemm(...)
{
// example kernel
}

Challenge
Use the above example to fill out
the dgemm function

 21

1. Explicitly encode
kernel pattern as
transformations
from naive loops.

2. Implicitly encode
the pattern with
a related
example

© 2025 Upasana Sridhar

Generating the entire microkernel is hard

22
Create prompts with these steps in the context

© 2025 Upasana Sridhar

What Worked
▪ CodeLLaMA can reproduce patterns very well

– Patterns shown in the context are applied even if they are not often
seen in training data

▪ Breaking down each step in a complex reasoning process
improved performance
– When asked to emit a precise piece of code, Code-LLaMA was the

most successful

▪ Style-transfer works well, but is surface level
– General structure is copied – which is the intent in this case. But

requires at least one “golden kernel” to be used as a seed

23

© 2025 Upasana Sridhar

What Didn’t
▪ When an arithmetic calculation was left implicit,

CodeLLaMA often guessed incorrectly
– e.g. the stride of a vectorized loop is reproduced exactly from the

example

▪ Inter-connected constraints leads to confused
code-generation
– When a loop is involved in unrolling as well as vectorization, the

generated code muddles the transformations

24

© 2025 Upasana Sridhar

Towards Fully Automatic Kernel Generation

25

▪ Preliminary success with using off-the-shelf LLMs for
writing specialized GEMM code.

– Good reasons to do a hybrid approach with traditional code-gen and
LLMs

▪ A good prompt shows success with a small model
– could be run natively on the target device for the library

▪ Systematic steps to write microkernels is impactful
– Serves as a metric to evaluate the performance of other models
– Can be used in finetuning
– Integrated into guardrails for provably correct code-generation

© 2025 Upasana Sridhar

Thank you!

26

https://linktr.ee/upasanasridhar

© 2025 Upasana Sridhar

Prompt Strategies: Only Vectorization
Single Step:

Objective
Vectorize the following code snippet

Vectorization Principles

Vectorization Examples
Original code
Vectorized code
Analysis (text)

Prompt
Vectorize the following code
snippet

Table-filling

You are a vectorization expert…

Example
Objective
Identify the vector instructions to fill out the table
below. Use the AVX2 vector ISA with float scalars
 {
 “Vector”:
 {“load”: “_ mm256_load_ps”
 <a list of vector instructions>
 }
 }

Prompt
Identify the vector instructions to fill out the table
below. Use the AVX2 vector ISA with double scalars

27

